A Mach－Zehnder interferometer electro－optic switch with ultralow voltage－length product using poled－polymer／ silicon slot waveguide＊

HUANG Xiao－liang（黄小亮），LI Cui－ting（李翠婷），DANG Pei－pei（党佩佩），and ZHENG Chuan－tao（郑传涛）＊＊
State Key Laboratory on Integrated Optoelectronics，College of Electronic Science and Engineering，Jilin University， Changchun 130012，China

（Received 7 May 2015）
©Tianjin University of Technology and Springer－Verlag Berlin Heidelberg 2015

Abstract

By using poled－polymer／silicon slot waveguides in the active region and the Pockels effect of the poled－polymer，we propose a kind of Mach－Zehnder interferometer（MZI）electro－optic（EO）switch operated at 1550 nm ．Structural pa－ rameters are optimized for realizing normal switching function．Dependencies of switching characteristics on the slot waveguide parameters are investigated．For the silicon strip with dimension of $170 \mathrm{~nm} \times 300 \mathrm{~nm}$ ，as the slot width var－ ies from 50 nm to 100 nm ，the switching voltage can be as low as 1.0 V with active region length of only $0.17-0.35 \mathrm{~mm}$ ，and the length of the whole device is only about $770-950 \mu \mathrm{~m}$ ．The voltage－length product of this switching structure is only $0.17-0.35 \mathrm{~V} \cdot \mathrm{~mm}$ ，and it is at least $19-40$ times smaller than that of the traditional polymer MZI EO switch，which is $6.69 \mathrm{~V} \cdot \mathrm{~mm}$ ．Compared with our previously reported MZI EO switches，this switch exhibits some superior characteristics，including low switching voltage，compact device size and small wavelength dependency．

Document code：A Article ID：1673－1905（2015）04－0264－4
DOI 10．1007／s11801－015－5081－3

In recent years，optical switching devices have received more and more attention due to their wide applications in optical communication and optical signal processing systems．In our previous reports，based on rib／rectangular waveguides and the poled polymer $\mathrm{AJ} 309^{[1,2]}$ ，different non－resonant electro－optic（EO）switches have been nu－ merically proposed，and they usually exhibit a switching voltage of $2-5 \mathrm{~V}$ and an EO region length of 3－6 mm， which indicates a voltage－length product of $5-30 \mathrm{~V} \cdot \mathrm{~mm}^{[3-5]}$ ． For a lower EO coefficient，a long active region is re－ quired to drop the switching voltage below 1 V ，but this will lead to long waveguide length，which is not allowed in low－voltage，ultra－compact and chip－level interconnec－ tion．Besides polymer EO switches，silicon EO switches also have shown great potential for being compatible with standard complementary metal－oxide－semiconductor（CMOS） processing technology．So far，silicon EO switches have been widely demonstrated based on free carrier deple－ tion ${ }^{[6-8]}$ or injection ${ }^{[9,10]}$ in diode structures or CMOS structures ${ }^{[11]}$ ．To meet the needs of optical communica－ tion，an optical switch should possess some important characteristics，involving small device dimension，suit－ able electrical and optical bandwidth，large voltage－ length product，high extinction ratio and low power con－
sumption．
Compared with other waveguide structures，such as rib waveguide and rectangular waveguide，the slot waveguide has been proven to be a good candidate to design and fabricate integrated optical devices．In this paper，we propose a kind of Mach－Zehnder interferometer（MZI） EO switch operated at 1550 nm by using poled－polymer／ silicon slot waveguides in the active region and silicon waveguides in the passive region，and the Pockels effect is exploited via the poled－polymer cladding in the slot waveguide．Through optimization，the device can per－ form normal switching functions．An impressive advan－ tage of this structure is that its voltage－length product is reduced by at least 19－40 times compared with that of the polymer MZI EO switch with switching voltage of 2.23 V and EO region length of $3 \mathrm{~mm}^{[12]}$ ．

Fig．1（a）shows the detailed structure of the EO switch， which consists of an input 3 dB directional coupling re－ gion with a length of L_{1} ，an output 3 dB directional cou－ pling region with a length of L_{1} ，an MZI EO region composed by two slot waveguides with a length of L_{MZI} ， and two transitive regions containing four sinusoidal transitive waveguides with a length along the propaga－ tion of L_{2} ．The cross－section of the left MZI EO arm is

[^0]shown in Fig.1(b). The slot waveguide contains an under silica cladding layer, two silicon strips with thin strip loader, a poled-polymer slot and an upper poled-polymer cladding layer. At wavelength of 1550 nm , the EO coefficient of the poled polymer is $\gamma_{33}=138 \mathrm{pm} / \mathrm{V}$, the amplitude loss coefficient is $2.0 \mathrm{~dB} / \mathrm{cm}$, and the refractive index is $n_{1}=1.58$. Then the mode effective refractive index can be tuned through changing the applied voltage. The refractive indices of silicon and silica are $n_{2}=3.455$ and $n_{3}=1.46$, respectively. The widths of silicon strip width and slot are W_{d} and W_{s}, respectively. The thicknesses of under silica cladding, slot and upper polymer cladding are h_{1}, h and h_{2}, respectively. The thickness of silicon strip loader on top of the silica layer is h_{3}.

In the two directional coupling regions, each 3 dB coupler contains two directional coupling silicon rectangular waveguides. The cross-section view in the coupling region is shown in Fig.1(c). The waveguide width and height are defined as W and H, respectively, and $H=h+h_{3}$, $h_{3}=50 \mathrm{~nm}$. The coupling gap between the two silicon waveguides is d. In order to realize the mode conversion between rectangular waveguide and slot waveguide, four taper-like coupling waveguides are used, as shown in the inset of Fig.1(a).

In the MZI EO region, the deposited electrodes contain three parts, left electrode, center electrode and right electrode. For obtaining a push-pull operation in the two arms, the EO polymers in the two slot areas are poled using contact poling method along the same direction. During poling, the three poling voltages applied on the left electrode, the center electrode and the right electrode are $+U_{\text {pol }}, 0 \mathrm{~V}$ and $-U_{\text {pol }}$, respectively, and these three voltages during operation are $0 \mathrm{~V}, U$ and 0 V , respectively.

(a)

(b)

(c)

Fig. 1 (a) Structure of the MZI EO switch based on slot waveguide; (b) Cross-section view from AA' side of the slot waveguide in the MZI region; (c) Cross-section view from $B B$ ' side in the 3 dB directional coupling region

In the following design, the operation wavelength of the device is selected as 1550 nm . Since the external applied electric field is along the x direction, the optical mode is selected as TE mode. The slot waveguide and the silicon rectangular waveguide should be both sin-gle-mode waveguides, so we need to optimize the waveguide core parameters. For slot waveguide, under TE polarization, the curves of effective refractive indices of the TE_{0} and TE_{1} modes versus the silicon width W_{d} are shown in Fig.2(a), where $\lambda=1550 \mathrm{~nm}, W_{\mathrm{s}}=100 \mathrm{~nm}$, $h_{1}=h_{2}=1000 \mathrm{~nm}, h_{3}=50 \mathrm{~nm}$ and $h=300 \mathrm{~nm}$. It can be seen that when W_{d} is taken as smaller than 250 nm , the single mode propagation can be realized under TE polarization. For silicon rectangular waveguide, under TE polarization, the curves of the effective refractive indices of TE_{0} and TE_{1} modes versus the silicon width W are shown in Fig.2(b), where $\lambda=1550 \mathrm{~nm}, \quad h_{1}=h_{2}=1000 \mathrm{~nm}$ and $H=350 \mathrm{~nm}$. It can be seen that when W is taken as smaller than 410 nm , the single mode propagation can be assured under TE polarization.

With wavelength of 1550 nm , for the two directional coupling silicon waveguides, Fig.3(a) shows the curves of the effective refractive indices of symmetric TE_{0} mode (denoted as $N_{\text {ref,s }}$) and asymmetric TE_{1} mode (denoted as $N_{\text {ref,a }}$) versus the coupling gap d. We can observe from Fig.3(a) that $N_{\text {ref,s }}$ decreases and $N_{\text {ref,a }}$ increases with the increase of d, and they gradually approach an identical value. Using

$$
\begin{equation*}
\left.L_{1}=\frac{L_{\mathrm{c}}}{2}=\frac{\lambda}{2\left[N_{\mathrm{ref}, \mathrm{~s}}(d, \lambda)-N_{\mathrm{ref}, \mathrm{a}}\right.}(d, \lambda)\right], \tag{1}
\end{equation*}
$$

the relation between the coupling region length L_{1} and the gap d is shown Fig.3(b). When d is less than $0.6 \mu \mathrm{~m}$, L_{1} is less than $500 \mu \mathrm{~m}$. In order to enhance the coupling of 3 dB coupler, reduce the length L_{1} and improve the device integrality, d should be taken as small as possible. However, d cannot be taken too small. Otherwise, these two coupling waveguides will be converted into a slot waveguide. Therefore, we select the coupling gap as $d=400 \mathrm{~nm}$, and the corresponding coupling region length is about $L_{1}=97.5 \mu \mathrm{~m}$.

Fig. 2 Curves of the effective refractive indices of TE_{0} and TE_{1} modes versus (a) the silicon strip width W_{d} in the slot waveguide and (b) the silicon waveguide width W in the silicon rectangular waveguide

EO overlap integral Γ_{x} clearly shows the modulation efficiency of an EO switch, and it should be as large as possible in order to reduce the switching voltage. Under 1550 nm wavelength, Fig. 4 shows the curves of Γ_{x} versus the parameters of slot waveguide. With the increase of slot width W_{s}, the electric field in the slot drops, and Γ_{x} exhibits an obvious decreasing trend. With the increase of h or W_{d}, the electric field in the slot is almost constant, and therefore Γ_{x} exhibits an increasing trend. Thus, enlarging the silicon width and minimizing the slot width can be both effective to increase Γ_{x}, which will be helpful for minimizing the switching voltage as well as shortening the EO region length.

Fig. 3 For the two directional coupling silicon waveguides, curves of (a) the effective refractive indices of TE_{0} and TE_{1} modes and (b) the coupling region length L_{1} of the 3 dB silicon directional coupler versus the coupling gap d

The product of the switching voltage U_{s} and L_{MZI} is an important characteristic for the MZI switch. Fig. 5 shows the curves of $U_{\mathrm{s}} \times L_{\mathrm{MZI}}$ with different slot waveguide parameters. We can see from Fig. 5 that the product gets larger with the increase of W_{s}, and a small W_{s} is required to drop the switching voltage and shorten the EO region length. The larger the silicon height h, the lower the product of $U_{\mathrm{s}} \times L_{\mathrm{MZI}}$, and this phenomenon can be explained according to the relation between Γ_{x} and h as shown in Fig.4(a). From Fig.5(b), to a certain extent, the product of $U_{\mathrm{s}} \times L_{\mathrm{MZI}}$ is lower with a wider W_{d}, and it will finally become a saturation value when W_{d} reaches the width of 210 nm . This phenomenon can be explained according to the relation between Γ_{x} and W_{d} as shown in Fig.4(b). Besides, the dependency of the product on wavelength is further investigated as depicted in Fig.5(c). The product varies slightly with wavelength. This is due to the slight variation of the power ratio confined in the
slot with the change of operation wavelength.

Fig. 4 Curves of the EO overlap integral Γ_{x} versus the slot width W_{s} with (a) the same W_{d} and different h and (b) the same \boldsymbol{h} and different $\boldsymbol{W}_{\mathrm{d}}$

Based on the above discussion, in order to decrease the voltage-length product, we should choose a smaller W_{s}, a larger h and a larger W_{d}. For example, we can take $W_{\mathrm{d}} \times h$ as $190 \mathrm{~nm} \times 300 \mathrm{~nm}$, and in this case, when the slot width is $W_{\mathrm{s}}=50 \mathrm{~nm}$, the corresponding $U_{\mathrm{s}} \times L_{\mathrm{MZI}}$ is $170.5 \mathrm{~V} \cdot \mu \mathrm{~m}$. In a similar way, when $W_{\mathrm{s}}=100 \mathrm{~nm}$, the corresponding $U_{\mathrm{s}} \times L_{\mathrm{MZI}}=351.0 \mathrm{~V} \cdot \mu \mathrm{~m}$. Taking the switching voltage as 1.0 V , the total length of the switch is $770 \mu \mathrm{~m}$ (including two $97.5 \mu \mathrm{~m}$-long couplers, a $200 \mu \mathrm{~m}$-long transitive region and a $170 \mu \mathrm{~m}$-long MZI region) with slot width of 50 nm , and that is $950 \mu \mathrm{~m}$ (including two $97.5 \mu \mathrm{~m}$-long couplers, a $200 \mu \mathrm{~m}$-long transitive region and a $350 \mu \mathrm{~m}$-long MZI region) with slot width of 100 nm .

(a)

Fig. 5 Curves of the voltage-length product $U_{s} \times L_{M Z I}$ versus the slot width W_{s} with (a) the same W_{d} and different h and (b) the same h and different $W_{d ;}$ (c) Curve of the voltage-length product $U_{s} \times L_{\text {MzI }}$ versus operation wavelength λ with $W_{\mathrm{s}} \times W_{\mathrm{d}} \times h=50 \mathrm{~nm} \times 190$ $\mathrm{nm} \times 300 \mathrm{~nm}$

Through using poled-polymer/silicon slot waveguides and employing the Pockels effect of the poled-polymer, a kind of MZI EO switch operated at 1550 nm is proposed. Structural design and simulation are performed. With the silicon strip dimension of $190 \mathrm{~nm} \times 300 \mathrm{~nm}$, as the slot width varies from 50 nm to 100 nm , the switching voltage can be as low as 1.0 V with active region length of only $0.17-0.35 \mathrm{~mm}$. The whole device length is less than $650 \mu \mathrm{~m}$ when the slot width is 100 nm , or less than $470 \mu \mathrm{~m}$ with the slot width of 50 nm . The voltage-length product of the proposed device is only $0.17-0.35 \mathrm{~V} \cdot \mathrm{~mm}$, which is reduced by at least 19-40 times compared with
that of our previously reported traditional polymer MZI EO switch ($6.69 \mathrm{~V} \cdot \mathrm{~mm}$). Due to the compact size and the ultra-low switching voltage, the switch can be good candidate for implementing the functions of optical switching and optical routing in optical network-on-chip fields.

References

[1] Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen and N. Peyghambarian, Nature Photonics 1, 180 (2007).
[2] Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. Y. Jen and N. Peyghambarian, Applied Physics Letters 91, 093505 (2007).
[3] C. T. Zheng, C. S. Ma, X. Yan, X. Y. Wang and D. M. Zhang, Optics Communications 281, 5998 (2008).
[4] C. T. Zheng, C. S. Ma, X. Yan, X. Y. Wang and D. M. Zhang, Applied Physics B 96, 95 (2009).
[5] C. T. Zheng, C. S. Ma, X. Yan, X. Y. Wang and D. M. Zhang, Journal of Modern Optics 56, 1383 (2009).
[6] Q. Xu, B. Schmidt, S. Pradhan and M. Lipson, Nature 435, 325 (2005).
[7] D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich and G. T. Reed, IEEE Photonics Technology Letters 24, 234 (2012).
[8] P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C. C. Kung, W. Qian, G. L. Li, X. Z. Zheng, A. V. Krishnamoorthy and M. Asghari, Optics Express 17, 22484 (2009).
[9] W. M. Green, M. J. Rooks, L. Sekaric and Y. A. Vlasov, Optics Express 15, 17106 (2007).
[10] R. Palmer, L. Alloatti, D. Korn, P. C. Schindler, M. Baier, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos and J. Leuthold, IEEE Photonics Technology Letters 25, 1226 (2013).
[11] J. Fujikata, J. Ushida, Y. Ming-Bin, Z. ShiYang, D. Liang, P. L. Guo-Qiang, K. Dim-Lee and T. Nakamura, 25 GHz Operation of Silicon Optical Modulator with Projection MOS Structure, Conference on Optical Fiber Communication (OFC), collocated National Fiber Optic Engineers Conference, 1 (2010).
[12] C. T. Zheng, C. S. Ma, X. Yan, X. Y. Wang and D. M. Zhang, Optics \& Laser Technology 42, 457 (2010).

[^0]: ＊This work has been supported by the National Natural Science Foundation of China（Nos．61107021， 61177027 and 61077074），the Ministry of Education of China（Nos． 20110061120052 and 20120061130008），and the Science and Technology Department of Jilin Province of China （No．20130522161JH）．
 ＊＊E－mail：zhengchuantao＠jlu．edu．cn

